Lecture 08
Subgradients &

the subgradient method




Subgradients

Recall that for convex and differentiable f,

fy) = (@) + V() (y—x) forall zy
|.e., linear approximation always underestimates f

A subgradient of a convex function f at x is any g € R" such that
fly)> flx)+ gl (y—2x) forall y

e Always exists
o |f f differentiable at z, then g = V f(x) uniquely

e Actually, same definition works for nonconvex f (however,
subgradients need not exist)



Examples of subgradients

Consider f : R = R, f(z) = |z
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e For 2 # 0, unique subgradient g = sign(x)

e For x =0, -
y| > ||+ g (y — )

yl > g'y = ge[-1,1].
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R" 5 R, f(z) =

Consider f
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e For x # 0, unique subgradient g = /|

s < 1}
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e For 2 = 0, subgradient ¢ is any element of {z



Consider f : R" = R, f(z) = ||z|

~or x; # 0, unique 7th component g; = sign(x;)

~or x; = 0, ith component g; is any element of |[—1, 1|



Let f1, fo : R™ — R be convex and differentiable, and consider

f(2) = max{ fi(x), fo(x)}

e For fi(x)

e For fo(x)

e For fi(x) = fa(x), subgradient ¢ is any point on the line
segment between V fi(x) and V fa(x)

fo(x), unique subgradient g = V fi(x)
f

> T
> f1(x), unique subgradient g = V f5(x)



Subdifferential

Set of all subgradients of convex f is called the subdifferential:

Of(x) ={g € R" : g is a subgradient of f at x}

e Of(x) is closed and convex (even for nonconvex f)

e Nonempty (can be empty for nonconvex f)
o If [ is differentiable at x, then df(x) = {Vf(z)}
o If Of(x) ={g}, then f is differentiable at  and Vf(z) =g



e Suppose f is the pointwise maximum of convex functions fi...., f,., 2.e.,

flo) = max fi(e),

where the functions f; are subdifferentiable.

® We first show how to construct a subgradient of f at x.
e Let £k be any index for which fi(x) = f(x), and let g €  fi(x).
Then g € Of(x).
® [nother words, to find a subgradient of the maximum of functions, we can

choose one of the functions that achieves the maximum at the point, and

choose any subgradient of that function at the point.
This follows from
f(z) = fu(2) 2 file) + g' (2 —2) = f(2) + ¢" (y — 2).
e More generally, we have
9f(z) = CoU{0fi(x) | filz) = F(x)},
1.e., the subdifferential of the maximum of functions is the convex hull

of the union of subdifferentials of the ‘active’ functions at .



Subgradient calculus

Basic rules forfunctions:

e Scaling: d(af) =a-0f provided a > 0
e Addition: d(fl + fg) = 0f1+0f
o Affine composition: if g(x) = f(Ax + b), then

Og(x) = ALOf(Ax +b)
e Finite pointwise maximum: if f(x) = max;—;__,, fi(2z), then
Of () = conv( U dﬁ(r))
ifi(x)=f(z)

convex hull of union of subdifferentials of all active functions
at x



Optimality condition

For any f (@ex orn),

f(a™) = min flx) <= 0e€af(a")

I

*

l.e., 2* is a minimizer if and only if O is a subgradient of f at x*.

This is called the subgradient optimality condition

Why? Easy: g = 0 being a subgradient means that for all y
fy) = fa)+0" (y —a*) = f(a")

Note the implication for a convex and differentiable function f,

with 0f(x) ={Vf(z)}
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Connection to convex geometry

Convex set (' C R", consider indicator function /¢ : R" — R,

0O ifxed

Io(x) =H{x e C} = {oo fodC

For x € C, dlc(x) = N (x), the normal cone of C' at x, recall

Ne(x) ={g e R": glx> gty forany y € C'}

Why? By definition of subgradient g,

Io(y) > Io(x) + gl (y — ) forall y

o Fory g C, Io(y) = o
e For y € C, this means 0 > ¢! (y — )
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Derivation of first-order optimality

Example of the power of subgradients: we can use what we have
learned so far to derive the first-order optimality condition. Recall
that for f convex and differentiable, the problem

min f(x) subject to z € C
i

Is solved at x if and only if

Vi)Y (y—xz)>0 forall yeC

Intuitively says that gradient increases as we move away from x.
How to see this? First recast problem as

min f(z) + Ic(2)

Now apply subgradient optimality: 0 € 9(f(x) + I (x))
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But

NS d(f(r) + Ic

—~
ap

0 € {Vf(2)} + Ne(o)

—Vf(x) € No(x)

— Vi) a>-Vfx)y foral yeC
Vi) (y—a)>0foral yeC

17111

as desired

Note: the condition 0 € df(x) + N¢(x) is a fully general condition
for optimality in a convex problem. But this is not always easy to
work with (KKT conditions, later, are easier)
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Example: optimality conditions

Given y € R", X € R"*P,

1 :
min §||y — XBHﬁ + A5l

where A > 0. Subgradient optimality:

0€ (3 lly— X813+ A3l
= 0¢ (—XT(y — XpB)+ A8||_,5||-J)
— X'(y—XB)=v
for some v € 9| 3|1, i.e.,
({1} if B; >0

v, e {—-1} if 3 <0, i=1...p
=1 1] if 8, =0
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Write Xy,... X, for columns of X. Then subgradient optimality

reads: (
X ET (y — X 3) = \- Sign (??) If 33 75 0

K\X,?(y —~XB)| <A if 3, =0

Note: the subgradient optimality conditions do not directly lead to
an expression for a solution ... however they do provide a way to
check optimality
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Example: distance to a convex set

Recall the distance function to a closed, convex set ("

dist(x, C') = min ||y — x|
yeC

This is a convex function. What are its subgradients?

Write dist(z, (') = ||x — Po(x)||2, where Po(x) is the projection of
x onto C'. It turns out that when dist(z,C') > 0,

- xr — PC’(" )
odist(z,C) = {H xr— Po(x ||2}

Only has one element, so in fact dist(x, C') is differentiable and
this is its gradient
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We will only show one direction, i.e., that

r — Po(x)
|l — Po(x)|2

e odist(xz, C)

Write uw = P (x). Then by first-order optimality conditions for a
projection,
(2 —u) ' (y—u) <0 forall yeC

Hence
CCH={y:(x—ul(y—u)<0}

Claim:

N
dist(y, C') > @ W= o an
|l — w2

Check: first, for y € H, the right-hand side is < 0
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For y € H, For y ¢ H,
(x—u)' (y —u) <0 (z —u)" (y —u) = ||z — ul|2|ly — ul]2 cos,

where 6 is the angle between x — u and y — w.
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(i) For y € H,
(r— ) (y —u) <0
dist(y,C') > 0

(z—u)" (y —u)
[l = ull2

dist(y, C') >

(ii) For y ¢ H,

"y =)

|2 = ull2

(@ —u

= ||y — ul|z cos 0 = dist(y, H) < dist(y,C)

Therefore, for any vy,

(e —w)(y—u)
o= ulls

dist(y,C) >
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for any v,

(@ —w)(y —u)

dist(y. C') >
R [P
(- uwly—z+2z—u)
|z — ]2
r—u
= ||z = ull2 + ( ) (y — )
|z — ul]2
Hence, g = H;__;‘“HQ is a subgradient of dist(z,C') at .
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The subgradient method
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Recall : gradient descent

Consider the problem

min f(x)
o

for f convex and differentiable, dom( f) = R™. Gradient descent:
choose initial (") € R”, repeat:

2B = k=1 ¢, . Vf(;z?(k_l)), E=1.2,3,...

Step sizes t;. chosen to be fixed and small, or by backtracking line
search

If Vf Lipschitz, gradient descent has convergence rate O(1/¢)

Downsides:
e Requires f differentiable

e Can be slow to converge
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Subgradient method

Now consider f convex, with dom(f) = R", but not necessarily
differentiable

Subgradient method: like gradient descent, but replacing gradients
with subgradients. |.e., initialize 22(9), repeat:

2B = ph=1) _ tr - g(k‘_l)? E=1.2,3,...
where g(‘["_l) - (“)f(;r(k_l)), any subgradient of f at pk=1)

Subgradient method is not necessarily a descent method, so we

(k)

keep track of best iterate xy_., among 20 2k so far, e,

Flai) = min, )
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Step size choices

o Fixed step sizes: t. =tall k=1,2.3,...

e Diminishing step sizes: choose to meet conditions

>0 >0
Y <o, » t=o0.
k=1 k=1

l.e., square summable but not summable

Important that step sizes go to zero, but not too fast

Other options too, but important difference to gradient descent:

step sizes are typically pre-specified, not adaptively computed
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Convergence analysis

Assume that f convex, dom(f) = R"™, and also that f is Lipschitz

continuous with constant G > 0, i.e.,

F(2) = )] < Glle —yll2 for all .y

Theorem: For a fixed step size t, subgradient method satisfies

Tim (o)) < f*+ G212

Theorem: For diminishing step sizes, subgradient method sat
isfles

. k «
lim f(;z?éelt) = f

k— oo

subgradient method has convergence rate O(1/€?) ... compare
this to O(1/€) rate of gradient descent
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Example
Given (x;,1;) € RP x {0,1} for i = 1,...n, consider :

T

£(8) =3 (= wial B+ log(1 + exp(a] 8))
i=1
This is a smooth and convex, with

n

VIB) =) (pi(B)—yi)x;

1=1

where p;(3) = exp(x! 3)/(1 + exp(z! 3)), i = 1,...n. We will
consider the problem:

1116i]11 f(B)+ M- P(pB)

where P(3) = [|B]|5 or P(5) = [I8II

®
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problem (1) : use gradients;  problem (2) : use subgradients.
Data example with n = 1000, p = 20:

Gradient descent Subgradient method
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Stochastic subgradient method

Similar to our setup for stochastic gradient descent. Consider sum

of convex functions
TrL
min E fi(x)
€T
i=1

Stochastic subgradient method repeats:

k) = pk=1) _ tr. - ggk_l)? k=1,2,3....

n

where i, € {1,...m} is some chosen index at iteration k:, chosen
by either by the random or cyclic rule, and g( = Ofi(x (k=1) )

(this update direction is used in place of the usual > ", ¢ “* 1))

1

Note that when each f;, 2 = 1,...,m is differentiable, this reduces
to stochastic gradient descent (SGD)



Convergence of stochastic methods

Assume each f;, 2 = 1,...m is convex and Lipschitz with constant
G >0

For fixed step sizes t;. = t, k= 1.2,3...., cyclic and randomized
stochastic subgradient methods both satisfy

lim f( )< * +5m2G?t/2

k— o0

Note: m( can be viewed as Lipschitz constant for whole function
S ", fi, so this is comparable to batch bound

For diminishing step sizes, cyclic and randomized methods satisfy

lim f(rt()ilt) = f~

k— 00
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Example

n

ngn f(B) = ZE ( — yxl B+ log(1 + exp(;z?;;ﬁ’))

fi(B)

The gradient computation Vf(3) = Z (pi(B)—y;)a; is doable
i=1
when n is moderate, but not when n ~ 500 million. Recall:
e One batch update costs O(np)
e One stochastic update costs O(p)

So clearly, e.g., 10K stochastic steps are much more affordable 30
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Blue: batch steps, O(np)
Red: stochastic steps, O(p)

Rule of thumb for stochastic

methods:
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Appendix

Some notes from convex geometry
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“Normal cone” of an arbitrary set

Normal cone: given any set C' and point x € (', we can define normal cone as

Ne(z) ={g: gz > gty forall y e C}
o The normal cone of a set C' at a boundary point x is the
set of all vectors gsuch that gT( y—x ) < 0forallz € C

(i.e., the set of vectors that define a supporting hyperplane to C' at z ).

»

b4

e Proof: For g;,92 € Nc(x),
(tigr +t2ge)' @ = tigl @ +tagg 2 > tig{ y +t2g3 y
(t1g1 + tago)'y for all ty,t, >0
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